
Instigate STL

Introduction
This is a concept proof implementation of STL algorithms to show that Instigate GP
methodology can be used for implementing generic libraries for real-life
applications. Algorithms themselves where taken from standard implementations
(SGI, GNU, boost). The library contains most of standard STL algorithms, and some
additions from boost.org and other generic libraries.

An important note on compatibility and completeness: the library provides only
algorithms and function binders/adaptors. It does not provide any data types such
as container classes. There are two reasons for this:

1. it is compatible with standard STL implementations, and algorithms/functors
from Instigate STL can be used in combination with standard STL containers

2. we believe that truly Generic libraries should provide algorithms that would
work with user data types.

Below are more details about Instigate's GP methodology.

The main goal is to implement truly generic algorithms, which do not impose any
syntactical requirements on their argument types. For example the STL algorithm

 UnaryFunctor for_each(Iterator b, Iterator e, UnaryFunctor f);

requires it's argument type "Iterator" to be model of concept "InputIterator", which
in classical STL implies syntactical requirement of having dereference operator
"operator*()", and it would not work on iterators, which use something like
"get_current()" or "dereference()", although conceptually the class would still be an
iterator if it had all the required operations of an iterator.

Instigate STL's "for_each" algorithm would work on any class T, which
conceptually is an InputIterator. Which means there must be some way to get its
current value, not necessarily via operator*(), and some way to increment it, not
necessarily operator++(), etc. Such genericity is achieved by using concept
interfaces, which are template classes, providing interfaces to the models of given
concept.

Theory
Generic algorithm is defined as an algorithm implemented in terms of Concept, as
opposed to a function in Structured Programming being defined in terms of Types.

Concept is defined as set of types (Models) satisfying requirements (Specification)
of the Concept.

Concept Specification consists of required Operations that should be supported
for the models of the concept, as opposed to Structured Programming where
Type is defined as tuple <V,O> of set of values V and set of operations O, here we
have just set of operations O.

Concept specification also has to define associated types, because some
operations may involve other supplementary types. For example the operation
'dereference' of a concept 'Input Iterator' involves an associated types 'Value Type'
and 'Reference'.

Concept C' is called refinement of concept C if Specification of C is a subset of the
specification of C', which is equivalent to set of models of C being superset of the
set of models of C'.

Refinement is the analogue of inheritance in OOP, and thus comes need of
polymorphism (in this case static), which is well covered in the literature and to
save space we do not provide here (see tag-based dispatching techniques applied
in original STL implementation).

Other similar projects
The STL library was standardized in '94 when this methodology and terminology
was not fully developed, Alexander Stepanov's and David Musser's ideas had yet to
evolve into the modern GP theory/methodology.

Currently there is no programming language truly supporting GP. In ISO/ANSI C++
'98 the "generic algorithms" are defined using function templates, and lack
argument checking (model compliance to concept requirements). Concepts are
defined only in documentation and models are defined by making proper interface,
matching the documentation requirements. Industry and ISO/ANSI C++ team are
working towards enhancement of C++ that would allow to fill this gap and provide
necessary constructs for true GP in C++.

In the meantime community has developed series of tricks for implementing all
aspects of the GP without relying on enhancements to '98 ISO/ANSI C++ standard.
Some of these tricks, however, require very deep understanding of template syntax
and more complex theory/notions than mentioned above, which complicates and
slows down adoption of these methods in community and industry.

Instigate's GP technology is an attempt to summarise these tricks and the theory
into a full-featured and yet simple enough set of techniques, that would allow to
implement generic libraries.

Main advantage of this methodology over the one used in standard STL of '94 is
that there are only semantical requirements on parameter types, and all syntactical
requirements were practically eliminated. E.g. as mentioned in example above, the
"for_each" would work on any iterator, even if it's dereference operation is not
implemented as "operator*()" and increment is not done using “operator++()”. The
only exception are notions of Default Constructible and Assignable, which due to
specifics of the C++ language have to impose syntactical requirements on the
models.

Technical details
True GP language/framework should allow to:

1. define a generic algorithm (e.g. A(T x)) operating on specific concepts (e.g. T
must be Assignable)

2. define a concept by specifying its associated types and required operations

3. define a model T of a concept C. I.e. provide map of T's actual operators to
operators required by the concept C's specification, even if syntactically they
do not match. Example is iterator's dereference operation being called
"get_current()" instead of "operator*()".

4. define concept C' being a refinement of concept C.

5. define polymorphic algorithm A(C) which would behave differently if actual
argument passed to it is a model of some concept C' which is a refinement of
C.

Instigate's GP approach suggests the following techniques to achieve above
mentioned requirements.

For each concept C define an interface template structure, which is something like
traits used in classical STL. However, it defines not only the associated types, but
also operations of the Concept. For example, InputIterator concept can be defined
as follows.

namespace input_iterator {

 template <typename T> struct interface {

typedef typename
std::iterator_traits<T>::value_type value_type;

...

 const value_type& dereference(T i) const

 {

 return *i;

 }

 void increment(T& i)

 {

 ++i;

 }

 ...

 }

};

Note that it doesn't matter what we write in the default implementation, as for each
concrete model it can be specialized and operations can be remapped to something
else. Our default implementation is provided so that it automatically works for
standard STL types:

The C++ Template Class Specialization capability is used to define models. E.g.
assume the class MyInputIterator is some old-fashioned iterator class with
interface not matching requirements of standard STL. Then to make it a model of
concept InputIterator one should define following:

namespace input_iterator {

 template <> struct interface<::MyInputIterator> {

 typedef int value_type;

 ...

 int dereference(const MyInputIterator& x)

 {

 return x.get_current();

 }

 void increment(MyInputIterator& x)

 {

 x = x.get_next();

 }

 ...

 }

}

The following structure is used to define concept requirements:

namespace input_iterator {

 template <typename T> struct requirements {

 requirements()

 {

 &require_value_type;

 &value_type_must_be_assignable;

 // etc.

 }

 // will compile only if interface<T> provides nested

// type name 'value_type'. Note that we don't put any
// syntactical requirements on the type 'T' itself

 void require_value_type()

 {

typedef typename

input_iterator<T>::value_type REQUIRED;

 }

 // now as we are sure that typename 'value_type' is
// defined we should also make sure it's a model of

// concept Assignable

 void value_type_must_be_assignable

 {

typedef typename

input_iterator<T>::value_type VALUE_TYPE;

//macro

CHECK(assignable::requirements<VALUE_TYPE>);

 }

 }

};

To check the requirements from within the generic algorithms, use preprocessor
macro CHECK:

template <typename InputIterator, typename UnaryFunction>

UnaryFunction for_each(InputIterator b,

 InputIterator e, UnaryFunction f)

{

 CHECK(input_iterator::requirements<InputIterator>);

 CHECK(unary_function::requirements<UnaryFunction>);

 ...

}

To implement generic algorithms without imposing any syntactical requirement

on its argument types use interfaces:

template <typename InputIterator, typename UnaryFunction>

UnaryFunction for_each(InputIterator b,

InputIterator e, UnaryFunction f)

{

 ... // CHECK requirements

 typedef input_iterator::interface<InputIterator> II;

 typedef unary_function::interface<UnaryFunction> UF;

 while (! II::equal(b, e)) {

 UF::invoke(f, II::dereference(b));

 II::increment(b);

 }

 return f;

}

The only syntactical requirement here is that assignability is implemented via copy-
constructor (due to specifics/limitations of C++ copy constructor syntax).

All the other requirements are completely semantical. For example the function
doesn't have to be invoked using operator(). It could as well be something like
f­>call(arg); It still can be used as an argument to Instigate STL "for_each"
algorithm.

Finally, the refinement is defined by simply inheriting base concept interfaces (both
for specification and for models) and by inheriting base concept requirements (note
that constructor of the base class will be invoked automatically and do all the
checks of the base concept specification).

	Introduction
	Theory
	Other similar projects
	Technical details

